35 research outputs found

    Rethinking Individual Global Max in Cooperative Multi-Agent Reinforcement Learning

    Full text link
    In cooperative multi-agent reinforcement learning, centralized training and decentralized execution (CTDE) has achieved remarkable success. Individual Global Max (IGM) decomposition, which is an important element of CTDE, measures the consistency between local and joint policies. The majority of IGM-based research focuses on how to establish this consistent relationship, but little attention has been paid to examining IGM's potential flaws. In this work, we reveal that the IGM condition is a lossy decomposition, and the error of lossy decomposition will accumulated in hypernetwork-based methods. To address the above issue, we propose to adopt an imitation learning strategy to separate the lossy decomposition from Bellman iterations, thereby avoiding error accumulation. The proposed strategy is theoretically proved and empirically verified on the StarCraft Multi-Agent Challenge benchmark problem with zero sight view. The results also confirm that the proposed method outperforms state-of-the-art IGM-based approaches.Comment: Accept at NeurIPS 202

    Effects of Prosodic Focus on Voice Onset Time (VOT) in Chongming Chinese

    Get PDF

    DeepGrading: Deep Learning Grading of Corneal Nerve Tortuosity

    Get PDF
    Accurate estimation and quantification of the corneal nerve fiber tortuosity in corneal confocal microscopy (CCM) is of great importance for disease understanding and clinical decision-making. However, the grading of corneal nerve tortuosity remains a great challenge due to the lack of agreements on the definition and quantification of tortuosity. In this paper, we propose a fully automated deep learning method that performs image-level tortuosity grading of corneal nerves, which is based on CCM images and segmented corneal nerves to further improve the grading accuracy with interpretability principles. The proposed method consists of two stages: 1) A pre-trained feature extraction backbone over ImageNet is fine-tuned with a proposed novel bilinear attention (BA) module for the prediction of the regions of interest (ROIs) and coarse grading of the image. The BA module enhances the ability of the network to model long-range dependencies and global contexts of nerve fibers by capturing second-order statistics of high-level features. 2) An auxiliary tortuosity grading network (AuxNet) is proposed to obtain an auxiliary grading over the identified ROIs, enabling the coarse and additional gradings to be finally fused together for more accurate final results. The experimental results show that our method surpasses existing methods in tortuosity grading, and achieves an overall accuracy of 85.64% in four-level classification. We also validate it over a clinical dataset, and the statistical analysis demonstrates a significant difference of tortuosity levels between healthy control and diabetes group. We have released a dataset with 1500 CCM images and their manual annotations of four tortuosity levels for public access. The code is available at: https://github.com/iMED-Lab/TortuosityGrading

    Retinal Vascular Network Topology Reconstruction and Artery/Vein Classification via Dominant Set Clustering

    Get PDF
    The estimation of vascular network topology in complex networks is important in understanding the relationship between vascular changes and a wide spectrum of diseases. Automatic classification of the retinal vascular trees into arteries and veins is of direct assistance to the ophthalmologist in terms of diagnosis and treatment of eye disease. However, it is challenging due to their projective ambiguity and subtle changes in appearance, contrast and geometry in the imaging process. In this paper, we propose a novel method that is capable of making the artery/vein (A/V) distinction in retinal color fundus images based on vascular network topological properties. To this end, we adapt the concept of dominant set clustering and formalize the retinal blood vessel topology estimation and the A/V classification as a pairwise clustering problem. The graph is constructed through image segmentation, skeletonization and identification of significant nodes. The edge weight is defined as the inverse Euclidean distance between its two end points in the feature space of intensity, orientation, curvature, diameter, and entropy. The reconstructed vascular network is classified into arteries and veins based on their intensity and morphology. The proposed approach has been applied to five public databases, INSPIRE, IOSTAR, VICAVR, DRIVE and WIDE, and achieved high accuracies of 95.1%, 94.2%, 93.8%, 91.1%, and 91.0%, respectively. Furthermore, we have made manual annotations of the blood vessel topologies for INSPIRE, IOSTAR, VICAVR, and DRIVE datasets, and these annotations are released for public access so as to facilitate researchers in the community

    Deep Segmentation of OCTA for Evaluation and Association of Changes of Retinal Microvasculature with Alzheimer’s Disease and Mild Cognitive Impairment

    Get PDF
    BackgroundOptical coherence tomography angiography (OCTA) enables fast and non-invasive high-resolution imaging of retinal microvasculature and is suggested as a potential tool in the early detection of retinal microvascular changes in Alzheimer's Disease (AD). We developed a standardised OCTA analysis framework and compared their extracted parameters among controls and AD/mild cognitive impairment (MCI) in a cross-section study.MethodsWe defined and extracted geometrical parameters of retinal microvasculature at different retinal layers and in the foveal avascular zone (FAZ) from segmented OCTA images obtained using well-validated state-of-the-art deep learning models. We studied these parameters in 158 subjects (62 healthy control, 55 AD and 41 MCI) using logistic regression to determine their potential in predicting the status of our subjects.ResultsIn the AD group, there was a significant decrease in vessel area and length densities in the inner vascular complexes (IVC) compared with controls. The number of vascular bifurcations in AD is also significantly lower than that of healthy people. The MCI group demonstrated a decrease in vascular area, length densities, vascular fractal dimension and the number of bifurcations in both the superficial vascular complexes (SVC) and the IVC compared with controls. A larger vascular tortuosity in the IVC, and a larger roundness of FAZ in the SVC, can also be observed in MCI compared with controls.ConclusionOur study demonstrates the applicability of OCTA for the diagnosis of AD and MCI, and provides a standard tool for future clinical service and research. Biomarkers from retinal OCTA images can provide useful information for clinical decision-making and diagnosis of AD and MCI

    Phonetic entrainment in L2 human-robot interaction: an investigation of children with and without autism spectrum disorder

    Get PDF
    Phonetic entrainment is a phenomenon in which people adjust their phonetic features to approach those of their conversation partner. Individuals with Autism Spectrum Disorder (ASD) have been reported to show some deficits in entrainment during their interactions with human interlocutors, though deficits in terms of significant differences from typically developing (TD) controls were not always registered. One reason related to the inconsistencies of whether deficits are detected or not in autistic individuals is that the conversation partner’s speech could hardly be controlled, and both the participants and the partners might be adjusting their phonetic features. The variabilities in the speech of conversation partners and various social traits exhibited might make the phonetic entrainment (if any) of the participants less detectable. In this study, we attempted to reduce the variability of the interlocutors by employing a social robot and having it do a goal-directed conversation task with children with and without ASD. Fourteen autistic children and 12 TD children participated the current study in their second language English. Results showed that autistic children showed comparable vowel formants and mean fundamental frequency (f0) entrainment as their TD peers, but they did not entrain their f0 range as the TD group did. These findings suggest that autistic children were capable of exhibiting phonetic entrainment behaviors similar to TD children in vowel formants and f0, particularly in a less complex situation where the speech features and social traits of the interlocutor were controlled. Furthermore, the utilization of a social robot may have increased the interest of these children in phonetic entrainment. On the other hand, entrainment of f0 range was more challenging for these autistic children even in a more controlled situation. This study demonstrates the viability and potential of using human-robot interactions as a novel method to evaluate abilities and deficits in phonetic entrainment in autistic children

    Fabrication of one-dimensional Ag/multiwalled carbon nanotube nano-composite

    Get PDF
    Composite made of multiwalled carbon nanotubes coated with silver was fabricated by an electroless deposition process. The thickness of silver layer is about 40 to 60 nm, characterized as nano-crystalline with (111) crystal orientation along the nanotube's axial direction. The characterization of silver/carbon nanotube [Ag/CNT] nanowire has shown the large current carrying capability, and the electric conductivity is similar to the pure silver nanowires that Ag/CNT would be promising as building blocks for integrated circuits
    corecore